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Prefata

Lucrarea de fata conceputa drept teza in vederea obtinerii titlului de doctor
in matematica, trateaza problematica evaluarilor asimptotice in teoria ana-
litica a numerelor.

Prezenta teza de doctorat este structurata in trei capitole pe care le vom
prezenta pe scurt in continuare.

Primul capitol cuprinde definitii, notiuni introductive si rezultate nece-
sare dezvoltarilor ulterioare. Unele rezultate si demonstratii sunt inspirate
si detaliate din bibliografia precizata, altele apartin autoarei. Tot in acest
capitol sunt generalizate o serie de rezultate binecunoscute in literatura de
specialitate.

In al doilea capitol sunt prezentate rezultatele centrale ale acestei teze de
doctorat. Majoritatea rezultatelor din acest capitol apar in articolul: ”New
extensions of some classical theorems in number theory”, publicat de autor
impreuna cu domnul profesor universitar doctor D. Popa in ” Journal of Num-
ber Theory” (vezi [4]). Rezultatele din acest capitol generalizeaza o serie de
teoreme celebre din teoria analitica a numerelor, cum ar fi faimoasa teorema
a lui Polya bazata pe teorema numerelor prime, ca gi un rezultat surprinzator
a lui Radoux publicat in 1977. Mentionam ca un rezultat din acest capitol,
enuntat fara demonstratie in articolul din J.N.T. este demonstrat in aceasta
teza. Deoarece in articolul din J.N.T. am prezentat ca aplicatii numai pe
acelea referitoare la numerele prime, lasand cititorului sa formuleze posibile
aplicatii la rezultatul lui Radoux, in prezenta teza am prezentat si o serie de
generalizari ale acestui rezultat.

Cel de al treilea capitol cuprinde rezultate trimise spre posibila publicare
la ”International Journal of Number Theory” de catre autoare impreuna cu
conducatorul de doctorat Dumitru Popa. In acest capitol indicam o metoda
de a obtine evaluari asimptotice pentru sume duble plecand de la evaluari



asimptotice pentru sume simple. Folosind procedeul indicat in teza aratam
ca toate rezultatele din articolul [4] pot fi utilizate pentru a obtine evaluari
asimptotice pentru sume duble. In acest sens prezentim o serie de rezultate
de tip dublu Poélya-Riemann, respectiv de tip dublu Riemann-Radoux.



Capitolul 1

Rezultate clasice in teoria
analitica a numerelor

Urmatorul rezultat a aparut ca urmare a discutiei cu conducatorul de doc-
torat, D. Popa. Din cate cunoastem el nu apare in literatura de specialitate.

Lema 1.0.1 Fie f : [2,00) — R o functie arbitrard. Definim R : [2,00) — R
PrIN

R(z)=>_f(p).

p<z

Atunci pentru orice © € [2,00) are loc egalitatea

fp) _\~R(k)— R(k—1)
ZH_Z Ink '

p<z k=2

Urmatorul rezultat este util in intelegerea demonstratiilor unor teoreme si
mi-a fost sugerat de conducatorul de doctorat, D. Popa. Din cate cunoastem,
el nu apare in literatura de specialitate.

Propozitia 1.0.1 Fie h : N x N — R o functie arbitrara. Pentru orice
x > 1 este adevarata urmatoarea egalitate

ZZh(d,g) = " h(ij).

n<z d|n 1j<z



Capitolul 2

Extinderi pentru anumite
teoreme clasice din teoria
numerelor

2.1 Rezultate preliminare

Reamintim binecunoscuta teorema a lui Riemann.
Fie f :]0,1] — R o functie integrabila Riemann. Atunci:

I~ (k[
fm 2 S (5) = / f(z)dz.

Intr-un articol clasic din 1917, vezi [24], bazat pe teorema numerelor prime,
Polya a aratat ca daca f : [0,1] — R este o functie integrabila Riemann pe

[0, 1], atunci
1
S g(5)= [

p<z, p prime

In 1977, vezi[27], Radoux a aritat c&

1 — k 6 [!
ggoﬁ;f(ﬁ)wk):;/o of (x) dr,

pentru orice functie f : [0,1] — R astfel incat zf (x) este continua pe [0, 1],
¢ este functia indicator a lui Euler, vezi de asemenea [16] si [22].

In acest capitol vom da generalizarea acestor rezultate si vom arata ca, desi
aparent sunt rezultate diferite, acestea spun acelasi lucru, vezi Theorem 2.2.1,
Theorem 2.2.5, Theorem 2.2.6, Corollary 2.2.7 si Theorem 2.2.8. Abordarea
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noastra este urmatoarea: in primul rand, vom demonstra rezultatele pentru
polinoame, apoi pentru functii continue si la sfarsit pentru functii integrabile
Riemann.
Rezultatele au fost publicate in articolul din J.N.T., vezi [4].

In scopul de a simplifica prezentarea, vom introduce urmatoarea definitie.

Definitia 2.1.1 Vom spune ca functia h : (0,00) — R are proprietatea P,,
cu p € R, daca ezista xg > 0 cu h(x) > 0 pentru orice v > xy, h este

) . C e ah (z)
derivabila pe (xg,00) i xh_)rgo ) = M

Definitia 2.1.2 Fie g : N — [0,00) o functie. Functia G : (0,00) — [0, 00)
definita prin G (z) = > g(n), se numeste functia sumatorie a lui g, vezi [3,

n<x

page 39].
Urmatorul rezultat apare in articolul publicat in ”Journal of Number

Theory”, vezi [4] (Proposition 1).
Propozitia 2.1.3 Fie f : (0,00) — R de doua ori derivabila pe (0,00) si de
asemenea existd £y > 0 cu f(x) >0 si f'(x) # 0 pentru orice x > xy i

/ "

im L0 _ o er i T _ o er.

ooe f (2) )

Fie h: (0,00) = R o functie cu proprietatea P, si g : N — [0, 00) astfel incat
functia sa sumatom'e este echivalenta cu h Daca Cy+p >0 51 Coy+p > —1,
atunci hm f(x Zf( Yg(n)=1- Cz+—u+1

Urmatorul rezultat apare in articolul publicat in J.N.T., vezi [4] (Corol-
lary 1).

Corolar 2.1.4 Fie h: (0,00) = R o functie cu proprietatea P, si

g : N — [0,00) astfel incat functia sumatorie este echivalentd cu h. De
asemenea fie k € NU{0}. Atunci pentru orice oy, ...,ap € R gi orice

Qg > — L, avem

1

. o H
1 ) 1 | k _ .
e (I 2)™ - (g 2)™ h Zn ny )t (lng n)* g (n) a0+ 11

?’L<:17

Urmatorul rezultat, care este independent, arata ca, in ipoteze naturale,
in scopul de a demonstra o evaluare asimptotica pentru functii continue, este
suficient a dovedi aceeasi evaluare asimptotica intr-o multime densa. Acest
rezultat apare in articolul publicat in J.N.T. vezi [4], (Theorem 1).
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Teorema 2.1.5 Fie k un numar natural, a >0 1T : C ([O, 1]k> — Fla, 00)
o functionala liniara cu proprietatea ca exista xo > a si L > 0 astfel incat

(T (f)) (x)] < L| fll, pentru orice feC ([0, 1}k> §1 orice T > I

sgiV:C ([0,1]k> — R o functionald liniard si mdrginitd. In plus, pre-

supunem cd exista A C C ([0, 1]k), A densa in C ([O, 1]k), astfel incat

lim (T (f)) () =V (f) pentru orice f € A.

T—00

Atunct

lim (T (f)) (z) =V (f) pentru orice f € C ([O, 1]k> .
T—r00

Urmatorul rezultat apare in articolul publicat in J.N.T., vezi [4], (Lemma
1), la data publicarii articolului autorii negasind rezultatul in mod explicit.
Ulterior, ei au gasit ca rezultatul este folosit, tot fara demonstratie, in [23]
(Theorem 1, pag.4) si in [18] (Theorem 1.1, pag.2-3).

Lema 2.1.1 Fie f : [0,1] — R o functie integrabila Riemann. Atunci pentru
orice € > 0 exista doud functii continue @, : [0,1] — R astfel incat

o (@) < Fla) <4 (x), Vo€ [0,1] s /01<w<x>—so<x>>dx9.

2.2 Rezultatele principale

Vom incepe cu un rezultat care poate fi considerat ca o versiune multidimen-
sionala a teoremei functiilor continue a lui Polya, vezi Theorem 2.2.5, Theo-
rem 2.2.6, Corollary 2.2.7. Rezultatul apare in lucrarea publicata de autoare
impreuna cu conducatorul de doctorat, D.Popa, vezi [4], ca [4], (Theorem 2).

Teorema 2.2.1 Fie h: (0,00) — R o functie cu proprietatea Py i

g : N — [0,00) astfel incdt funclia sa sumatorie este echivalentd cu h. De
asemenea fie k € NU{0}.

Atunci pentru orice functie continud f : [0, 1]*" — R, avem

nlnln In, n
ity 1 (5 )= [ s



Theorem 2.2.1 ne sugereaza urmatoarea definitie.

Definitia 2.2.2 Fie h: (0,00) — R o functie cu proprietatea Py i

g : N — [0,00) astfel incat functia sumatorie este echivalentd cu h. Pentru
orice k € NU {0}, vom nota cu Fj ([O, 1]k+1,g,h) clasa tuturor functiilor
integrabile Riemann f : [0,1]*"1 — R cu proprietatea cd

nlnln In; n
g S (5 )= [ s

Din Theorem 2.2.1 obtinem urmatorul rezultat care apare in articolul
publicat in J.N.T., vezi [4], (Corollary 2).

Corolar 2.2.3 Fie h: (0,00) — R o functie cu proprietatea Py si g : N —
[0,00) astfel incat functia sa sumatorie este echivalentd cu h. Atunci pentru
orice k € NU {0}, avem

C ([0,1)*") c Fi ([0, 1%, g,h) € R ([0,1]"+).
Urmatorul exemplu arata ca pentru k£ € N incluziunea

Fi ([07 1]k+l’g’ h) CR ([(), 1]k+1)

este, in general, stricta, vezi [4].
Urmatorul rezultat apare in articolul publicat in J.N.T., vezi [4], (Propo-
sition 2).

Propozitia 2.2.4 Fie h: (0,00) = R o functie cu proprietatea Py si
g : N — [0,00) astfel incat functia sa sumatorie este echivalentd cu h. Mai
departe presupunem ca lim % = 0. De exemplu g(n) = 1, Yn € N gi

n—oo

h(xz) =z, Vo > 0. Fie k € N. Atunci f : [0, 1]k+1 — R definita ca
f ($0,$17 ey xk) = X{1} ($1)
este integrabild Riemann pe [0, 1] gi

. 1 n Ingn In; n /
lim — - . =0, =1.
200 h(a:)zf(x’lnlaz lnkx) /@, ’ ’

n<x o

In continuare, vom da unele exemple netriviale de functii care apartin
claselor F, ([07 ¥t g, h). Acest rezultat apare in articolul publicat in J.N.T'.,
vezi [4], (Theorem 3).



Teorema 2.2.5 Fie h : (0,00) — R o functie cu proprietatea Py i fie g :
N — [0,00) astfel incat functia sa sumatorie este echivalentd cu h. De
asemenea fie k € NU{0}. Atunci pentru orice functie integrabila Riemann
w: [0,1] = R, orice functii continue vy : [0,1] — [0,1], ..., vx : [0,1] — [0, 1]
cuvy (1) v (1) # 0, functia f:[0,1]** — R definitd ca

f(xo,x1, .y xp) = w (wovy (21) - - - vk (T1))

apartine clasei F, ([0,1]"1, g, h).

Urmatorul rezultat apare in articolul publicat in J.N.T., vezi [4], (Theo-
rem 4).

Teorema 2.2.6 Fie h: (0,00) — R o functie cu proprietatea Py i fie

g : N — [0,00) astfel incdt functia sa sumatorie este echivalentd cu h. De
asemenea fie k € NU{0}. Daca vy : [0,1] — R este integrabila Riemann,
vr 2 [0,1] = R, ..., vx : [0,1] — R pentru orice functii continue, atunci
functia f :[0,1]**' — R definitd prin

f (2o, 21, ..y Tk) = vo (T0) v1 (21) - - - vk (7%)
apartine clasei Fy, ([0, 1]¥T g, h).

Din Teorema 2.2.5 gi Teorema 2.2.6 avem, in particular urmatorul rezultat
care apare 1n articolul publicat in J.N.T., vezi [4], (Corollary 3).

Corolar 2.2.7 Fie h: (0,00) — R o functie cu proprietatea Py si fie

g : N — [0,00) astfel incdt functia sa sumatorie este echivalentd cu h. Fie
ke NU{0}. Atunci:

(1) Fo ([0,1],9,h) = R ([0,1]) i.e. pentru orice functie integrabila Riemann
f:10,1] — R avem

i i 37 () ot = [ (@)a

n<x

(i1) Daca w : [0,1] — R este integrabila Riemann, v, : [0,1] — R, ..
vk 1 [0,1] = R sunt functii continue cu vy (1) -+ - v, (1) # 0 avem

1 Z n In; n In; n
1 —_— _— “ . e p—
whoo h(x )n<xw($ . <1ﬂ1$) o <1Dkx>>g(n)

/0 w(x- vy (1) v (1))dex.
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(11i) Daca vy : [0,1] — R este integrabila Riemann, vy : [0,1] — R,
v+ [0, 1] = R sunt functii continue avem

:}Lrgoﬁnzgvo (%) w (EZ)“’“ (E’;Z) g(n) = vy (1)---v (1)/01 v (x) da.

Urmatorul rezultat este o noua extindere a teoremei lui Radoux. El apare
in articolul publicat in J.N.T., vezi [4], (Theorem 5).

ceey

Teorema 2.2.8 Fie h : (0,00) — R o functie cu proprietatea P,, cu p €
R—{0} si fieg : N — [0, 00) astfel incat functia sa sumatorie este echivalenta
cu h. De asemenea fie k € NU{0}. Atunci:

(i) pentru orice vy, ..., € R, si orice functie continud ¢ : [0,1]* — R
avem

2 ¢ (3 B2 B ) o ) ()™ g )

n<lz
T
e =1 (Ing ) - -« (Ing, )™ h ()
1
= x,1,...,1)dz.
n [ et

k-ori

(i1) Daca p € (1,00), pentru orice functie f : [0, 1]k+1 — R cu proprietatea
ca (xg, 1, ..., T) — :vg_lf (g, 1, ..., k) este continua pe |0, 1]k+1 §i oricare
ar fi

at, ..., € R avem

S F (o ) () ()™ g ()

n<lx
lim "=
e (Iny )™ - -« (Ing, )™ h (x)
1
= u/ o (2,1, .., 1)d.
0 —~

(11i) Daca p € (1,00), pentru orice functie f : [0, 1]k+1 — R cu proprietatea
cd (z, @1, ..., k) — o f (@o, 21, ..., 21) este continud pe [0, 1]k+1 §i oricare
ar fi aq, ..., € R avem

S (2 me ) i g ) ()™ - ()™ g ()

lim ner — - -
z—00 =4 (Ing )" (Ing )™ - - - (Ing, )™ h ()
1
_ 1, 1)dz.
p [ p 1 s

k-ori
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(iv) pentru orice functie integrabila Riemann w : [0,1] — R, oricare ar fi
functiile continue vy : [0,1] — [0,1], ..., vk : [0,1] = [0,1] cuvy (1)-- vy (1) #

0 avem
S w (3 - <}$Z> v GEZZ)) nl—# (Iny n)al <+ (Iny, n)ak g(n)
n<x
I <
b =1 (Ing )™ -+ - (Ing 2)** h ()

= M/o w(x-vy (1) v (1))de.

(v) pentru orice functie integrabila Riemann vy : [0,1] — R, oricare ar fi
functiile continue vy : [0,1] = R, ..., vx : [0,1] = R

>t g (2) (Ing n)™ vy (%) o (Ing )™ vy ({Eﬁ) g(n)

n<x

I
e =1 (Ing ) - -« (Ing, )™ h (z)

= pvp (1) v (1)/0 vo (z) dx.

(vi) Daca p € (1,00), pentru orice functie uy : [0,1] — R astfel incat
r — o' g (x) este integrabild Riemann, oricare ar fi functiile continue
v1:[0,1] =R, ..., v :[0,1] - R

> uo (2) (Ing n)™ vy <%> o (Ing n) ™ vy (Eﬁ) g(n)

n<z

!
o (In; 2)** -+ - (Ing 2)** h (2)

= pvp (1) vg (1)/0 " g (2) da.

Vom da in continuare cateva exemple, ca aplicatii la Teorema 2.2.8. Din
cate cunoastem rezultatele nu apar in literatura de specialitate.

Pentru ¢ : N — [0, 00), functia indicator a lui Euler, avem:

ng m—x cand r — oo.

n<z

Propozitia 2.2.9 Fie k € NU{0}. Atunci:
(i) pentru orice functie f : |0, 1]k+1 — R cu proprietatea ca
(0, T1, .oy ) = xo f (o, T1, ..., Tk) este continud pe |0, 1]}€+1 g1 oricare ar fi

12



at, ..., € R avem

> £ (22 ) () - ()™ o ()

n<x
L
huvd (Ing 2)** -+« (Ing, )™ 22
6 1
= — [ zf(z,1,..,1)dz
™ Jo
k-ori

(i1) pentru orice functie f : |0, 1]"Cle — R cu proprietatea ca
(xo, 21, ...y ) — x1f (To, 21, ..., T) este continua pe |0, 1]k+1 i oricare ar fi
aty ..., € R avem

> 7 (2 e )t (lny ) () ()™ ()

n<x
z—300 z (Iny z) (Ing 2)** -+ - (Ing 2)**
6 [
= —2/ flz,1,...,1)dz.
(i1i) pentru orice functie ug : [0,1] — R astfel incit © — zug(x) este
integrabila Riemann, oricare ar fi functiile continue vy : [0,1] — R,
vk 1 [0,1] = R i oricare ar fi aq, ..., o € R avem

> uo (2) (Ingn)™ vy ({E%’;) o (Ing n) ™ v (lnﬂ> ¢ (n)

Ing x
n<x

ey

.
e (Ing )" -+« (Ing, )™ 22

6 1
= o (1) (1)/ zug (x) de.

m 0
Pentru ¢ : N — [0, 00), functia indicator a lui Euler, avem:

p(n) _ 6z*°
ne (2 — «)

cand x — oo i a < 1.
n<x

Propozitia 2.2.10 Fie k € NU{0}. Atunci:

(i) pentru orice functie f : |0, 1]k+1 — R cu proprietatea ca

(zo, 71, ..., 1) — 25 “f (x0, 71, ..., 1) este continud pe [0, 1]k+1 si oricare ar

fiag,...,ar €ER sia <1 avem

> (2 ) ()™ () L

. n<x ne
oy (Iny )™ - - - (Ing, 2)** 22~
6 1
= = o f (2,1, ..., 1)dz.
™ Jo S~——

k-ori

13



(i1) pentru orice functie f : |0, 1]k+1 — R cu proprietatea ca
(zo, 71, ..., 1) — 21 “f (20, 71, ..., 1) este continud pe [0, 1]k+1 §i oricare ar
fiag,...,a €R si o <1 avem

> 7 (222 ) () ()™ - () o ()

hm ne 11—« a «
T—00 x(Ingx) " (Ing )™ - -+ (Ing )"
1
= %/ f(z,1,...,1)dz.
7 Jo ——

k-ori

(7ii) pentru orice functie integrabila Riemann vy : [0,1] — R, oricare
ar fi functiile continue v, : [0,1] — R, ..., vx : [0,1] — R i oricare ar fi
ay, ..., € R avem

> g (2) (Ing n)™ vy (E%Z) - (Ing )™ vy ({Eﬁ) ¢ (n)

n<x

.
e x (lng )™ -+« (Ing )™

= %vl (1) - - vy (1)/0 vo (z) dx.

In continuare reamintim, vezi [6, 28]:
(i) o functie [ : (0,00) — R se numeste functie cu variatie lenta (in sens
Karamata) daca este masurabila, exista o > 0 cu [ (x) > 0 pentru orice

x> o sl lim Haz) _ 1, Va > 0.
z—00 H(®@)

(i) Fie u € R. functia h : (0, 00) — R se numeste cu variatie regulata cu
index p daca este masurabila si exista [ : (0,00) — R o functie cu variatie
lenta astfel incat h (z) = z#l (x), Vo > 0.

In primul sau raport asupra lucrarii [4] referentul ne-a sugerat sa studiem
legatura cu functiile cu variatie lenta. Acest rezultat apare in articolul pub-
licat in J.N.T., vezi [4], (Lemma 2) si este raspunsul pe care autorii l-au dat
referentului.

Lema 2.2.1 Fieh : (0,00) — R o functie cu proprietatea P,, cu p € R—{0}
st fie g : N — [0,00) astfel incat functia sa sumatorie este echivalentd cu h.
Atunci h cu variatie requlata cu index p.

2.3 Aplicatii

In acest subcapitol, vom aplica rezultatele demonstrate mai sus i.e. Teo-
rema 2.2.1, Teorema 2.2.5, Teorema 2.2.6 si Corolarul 2.2.7, pentru cateva
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functii aritmetice, binecunoscute in teoria numerelor, vezi [1, 3, 17, 20]. Ne
vom concentra numai asupra cazului corespunzator functiilor sumatorii peste
numerele prime.

In continuare vom nota cu P multimea tuturor numerelor prime si cu

> ---pentru Y,

p<z p<z, p prime

Definitia 2.3.1 Fie h : (0,00) = R o functie cu proprietatea P,. Vom
spune ca v : P — [0,00) functia sa sumatorie peste numerele prime este

echivalentd cu h daca gi numai daca ), v(p) ~ h(x) cand x — oo.
p<z

Urmatorul rezultat, care stabileste o legatura intre functia sumatorie
peste multimea numerelor naturale i functia sumatorie peste multimea nu-
merelor prime, este probabil cunoscut, dar nu l-am gasit explicit in literatura
de specialitate. El apare in articolul publicat de autoare impreuna cu con-
ducatorul de doctorat D. Popa, vezi [4], farda demonstratie. Demonstratia
data aici este inspirata din Landau, vezi [20, pag. 25].

Inn

Lema 2.3.1 Fie f : (0,00) — (0,00) astfel incat (M) este un sir
n>2

f(n)
In

[&.°]
descrescator si seria ), 4> este divergenta. Atunci

n=2

Yo f(p) -~ Z% cand x — o0.

p<z n<x

Definitia 2.3.2 Fie h: (0,00) = R o functie cu proprietatea P, si

v:P — [0,00) astfel incat functia sa sumatorie peste numerele prime este
echivalentd cu h. De asemenca fie k € NU{0}. Notam cu Fy™™ ([0, 1]*1, v, h)
clasa tuturor functiilor integrabile Riemann f :[0,1]*"' — R cu proprietatea

ca
1 p Inip  Ingp /1
| —_— - .., — = 1,....1)dx.
e h(z) I;f (x’lnlx’ "Ing v(p) 0 f(x’g,’_) v

k-ori

Rezultatul urmator spune ca daca stim un rezultat pentru fiecare functie
sumatorie peste multimea tuturor numerelor naturale, atunci putem obtine
un rezultat similar pentru fiecare functie sumatorie peste numerele prime.
Rezultatul a fost publicat in J.N.T., vezi [4], (proposition 3).

Propozitia 2.3.3 Fie h: (0,00) = R o functie cu proprietatea P,. Fie k €
NU{0}. Dacd f € Fy ([0,1]**, g, h) pentru orice g : N — [0,00) astfel incat
functia sa sumatorie este echivalenta cu h, atunci f € f}f”me ([0, 1)1, h)
pentru orice v : P — [0,00) astfel incat functia sa sumatorie peste mulfimea
numerelor prime este echivalenta cu h.
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Urmatorul rezultat este o generalizare a clasicei teoreme a lui Polya.
Demonstratia rezulta din Corolarul 2.2.7 si Propozitia 2.3.3. Rezultatul apare
in articolul din J.N.T., vezi [4], (Corollary 4).

Corolar 2.3.4 Fie h: (0,00) — R o functie cu proprietatea Py si

v: P — [0,00) astfel incat functia sa sumatorie peste numerele prime este
echivalentd cu h. De asemenea fie k € NU{0}. Atunci:

(i) F¢([0,1],9,h) = R([0,1]) i.e. pentru orice functie integrabili Rie-
mann f:1[0,1] - R avem

I 27 (5) n=| s
(ii) pentru orice functii continue f :[0,1]*"" — R
lim — Zf plmp  lwp v( ):/1 flz,1,..,1)dz
x—>ooh 2 Iz’ g b 0 =
k-ori

(11i) pentru orice functie integrabild Riemann w : [0,1] — R, orice functii
continue vy : [0,1] = [0,1], ..., vp : [0,1] = [0,1] cu vy (1) -+ - vk (1) #0

. P In; p Iny, p
1 _ DI =
e h(x) Zw (x v <ln1 x) vk (lnk:v v(p)

p<w

/0 w(x-v (1) v (1))de.

(iv) pentru orice functie integrabila Riemann vy : [0,1] — R, orice functii
continue vy : [0,1] — [0,1], ..., vg : [0,1] — [0, 1]

JL@O%;UO (2} Gzi)”’“ (E:i) o(p) = o1 (1)--vy (1) /01 vo(x)da.

In continuare, dam cateva cazuri particulare pentru Corolarul 2.3.4. Ream-
intim ca pentruv : P — [0, 00), v (p) = 1, functia sa sumatorie peste numerele

prime este 7 : (0,00) — [0,00), 7 (z) = > 1 i din teorema numerelor prime,
p<z

m(x) ~ = as x — oo, vezi [17, 20].
De asemenea, pentru v : P — [0,00), v(p) = Inp, functia sa sumatorie

peste numerele prime este 9 : (0, 00) — [0,00), ¥(z) = >_ Inp, prima functie
p<z
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a lui Chebyshev si din teorema numerelor prime, ¥ (z) ~ = cand x — oo,
vezi [17, 20].

Aplicand Corolarul2.3.4 pentru aceasta functie obtinem urmatorul rezul-
tat care a fost publicat de catre autoare impreuna cu conducatorul de doc-
torat D. Popa, ‘in J.N.T. vezi [4], (corollary 5):

Corolar 2.3.5 Fie k € NU{0}. Atunci:
(i) pentru orice functie continud f :[0,1]*! — R,

1 1 1 !
lim 22 (p LUt _p) = [ s, s
Too T 4o 2l Ing 0
k-ori
lim — Zf plup lup Inp = 1 (z,1,...,1)dx
z—00 T 2 Ing 2’ Ing @ P 0 N
k-ori

(i1) pentru orice functie integrabila Riemann w : [0,1] — R gi orice functii

continue vy : [0,1] — [0,1], ..., vg : [0,1] = [0,1] cu vy (1)---v (1) # 0, avem
. Inx (p (lnlp) (lnkp))
lim — wl=-1m cee Vg
T—00 I P X lnl X lnkm

1
= / w(x- vy (1) v (1))de;
0
.1 p In; p Ing p
lim = L . 1
2500 Zw ($ E (lnlx) vk (lnkx np

p<z

_ / (e vr (1) - v (1))da.

(7ii) pentru orice functie integrabila Riemann vy : [0,1] — R i orice
functii continue vy : [0,1] — [0,1], ..., vy : [0,1] — [0,1],

) Ini p Ing p
Ul e e ,I—}k
In; z Ing, x




Capitolul 3

Evaluari asimptotice pentru
unele sume duble din teoria
numerelor

3.1 Introducere si context

Comportamentul asimptotic pentru diferite sume este una dintre problemele
fundamentale in analiza matematica, teoria numerelor i nu numai . Rezul-
tate diferite si profunde de acest tip pot fi gasite , de exemplu, in cartile
lui Bateman-Diamond [3], Landau [20] si Tenenbaum [31]. In continuare
vom indica o metoda de a obtine evaluari asimptotice pentru sume duble din
evaluarile asimptotice pentru sume simple , Teorema 3.2.1, Propozitia 3.2.2 si
Corolarul 3.2.3. Ca aplicatii aratam ca toate rezultatele din articolul scris de
autoare impreuna cu conducatorul de doctorat, Dumitru Popa, vezi [4] pot
fi folosite pentru a obtine unele evaluari asimptotice pentru sume duble, vezi
Corolarul 3.2.5. Folosind un rezultat vechi a lui Landau din 1900, am obtinut
un nou rezultat de tipul Polya - Riemann pentru sume duble, vezi Corolarul
3.2.8, Corolarul 3.2.9. De asemenea, ca aplicatie concreta prezentam o serie
de rezultate care implica functia numarul divizorilor si functia indicatorul
lui Euler, vezi Corolarul 3.2.10 gi Corolarul 3.2.12. O alta aplicatie a rezul-
tatelor generale obtinute se refera la versiuni duble pentru rezultate de tip
Riemann-Radoux. Daca h : (0,00) — R este o functie pentru care exisa
xo > 0 astfel incat h () # 0 oricare ar fi x > xy vom spune ca h este nenula.
De asemenea daca h : (0,00) — R este nenula §i g : N — R, vom spune ca
functia sumatorie a lui g este echivalenta cu h daca »_ g(n) « h(x).

n<x

Definitia 3.1.1 Fieu: N x N — R o functie arbitrara. Functia
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G : (0,00) = R definita ca G (z) = > u(i,j) se numeste functia dubla
ij<z

sumatorie asociatd lui u.

In mod similar, daca A,B C N siv: A x B — R este o functie arbitrard,

functia sumatorie dubla G 4 g : (0,00) = R ca G4 p () = > v (i,7).
ij<e, (i,j)€AxB

Daca h : (0,00) — R este nenula, A, B C Ngiv:Ax B — R, vom spune
ca functia dubla sumatorie a lui v este echivalenta h daca

> vl j)whi(z).

ij<z, (i.j)EAXB

Propozitia 3.1.2 Fie u : N x N — R o functie arbitrara. Oricare ar fi
x > 1 avem urmatoarea eqalitate:

Zu(i,j)zZZu(d,%).

17<z n<z d|n

Cu alte cwvinte, dacd g : N — R definitd ca g(n) = Y u(d,2), atunci
din
functia sumatorie dubla a lui u este egald cu functia sumatorie a lui g.

Corolar 3.1.3 (a) Fie f : N = R o functie arbitrara. Oricare ar fi x > 1
avem urmdtoarea egalitate Y f(n)d(n) = > f(ij).

n<lz <z
(b) Fie f,g : N — R doua functii arbitrare. Atunci, oricare ar fi x > 1

avem urmdtoarea egalitate > f (d) g (%) = > f (1) g (j); cu alte cuvinte,

n<x d|n iy<z

daca f = g este convolutia Dirichlet dintre f si g, atunci > (f*g)(n) =

S F(0)90). -

ij<z

In continuare vom afla unele evaluari asimptotice pentru functia numarul
divizorilor si functia indicatorul lui Euler.

Propozitia 3.1.4 Avem urmatoarea evaluare asimptotica pentru functia numarul
divizorilor:

1 1
ZMTMZ§IH3I'+CIH2I—|—O(IH$),

n<x

unde C' este constanta lui Euler.
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Propozitia 3.1.5 Avem urmatoarele evaluari asimptotice:
(1)

1 1 — 6AT? — 2
ng : 8z 4n$+(360 6 Zr 9)z + O(av/TIng),

™ ™

iy<z

o.°]
unde C' este constanta lui Euler si A=) “(’2#

(i) "

1 AC — 1)z In?
Zd . $réx+(0 Q)xnx—i—O(xlnx),

i<z

unde C' este constanta lui Euler.
(111)
2

Zd 75 +O(x\/_lna:)

i<z

3.2 Rezultate principale

Urmatorul rezultat arata ca, daca stim o evaluare asimptotica pentru o suma
de o "singura variabila 7 putem obtine o evaluare asimptotica pentru o suma
de "doua variabile ”

Teorema 3.2.1 Fie h : (0,00) — R o functie, eventual nenuld, si fie k €
NuU{0}. Daca f : [O, 1]*1 — R este o functie cu proprietatea cd existd

n lnln In,n
lim —— ... =L R
et h(z Zf (m lnlx " Ing x> 9(n) (7)€

oricare ar fi g : N — R astfel incat functia sa sumatorie este echivalenta cu
h, unde L (f) depinde doar de f, atunci

Zf <Q’ Iny (23)77 Ing (Z])) u(l,j) _ L(f)

z Injzx In, x

oricare ar fi u : N x N — R astfel incat functia sa sumatorie dubla este
echivalenta cu h.

Rezultatul urmator, euristic vorbind, spune ca daca stim un rezultat pen-
tru orice functie summatorie dubla pe N x N, atunci putem deduce un rezul-
tat similar pentru orice functie summatorie dubla peste produsul cartezian a
doua submultimi de numere naturale.
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Propozitia 3.2.2 Fie h : (0,00) — R o functie care este eventual nenuld
si fie k € NU{0}. Dacd f:[0,1]*"r — R este o functie cu proprietatea cd
exrista

lim sz (2’ In,g (U),, Iny (U)) u(i,j)=L(f) R

z Injz In; x

pentru orice u : N X N — R pentru care funclia sa sumatorie dubla este
echivalenta cu h, unde L (f) depinde doar de f, atunci

m L i mGg) ey G g -
xlggo h(l’) ZEAXBf( ) RREY ) (a]) L(f)

- — r Imx Ing, x
ij<z, (i,5)

pentru orice A,B C N g1 orice v : A X B — R pentru care functia sa
sumatorie dubla este echivalenta cu h.

Din Teorema 3.2.1 si Propozitia 3.2.2 avem urmatorul corolar.

Corolar 3.2.3 Fie h : (0,00) — R o functie eventual nenuld si fie k €
NU{0}. Daca f :[0,1]¥"1 — R este o functie cu proprietatea ca existd

n lnln In, n
lim —— vy ——— =L R
Jm h(z Zf (:c In; 2’ Ing x) 9(n) (1) €

pentru orice g : N — R a carei functie sumatorie dubla este echivalenta cu
h, unde L (f) depinde doar de f, atunci

1 ij Ing (i) Imp (i) o
wlggom ZeAxBf(;’ lnlx Y lnkz )U(Z’j)_L(f)

ij<z, (i,5)

pentru orice A,B C N st orice v : A x B — R pentru care functia sa
sumatorie dubla este echivalenta cu h.

3.2.1 Rezultate de tip dublu Polya-Riemann

In continuare, vom demonstra unele rezultate care, din motive evidente le
vom numi rezultate duble de tip Polya-Riemann, a se vedea [4, 24]. Pentru
aceasta reamintesc urmatoarea definitie, a se vedea [4] [Definitie 1].

Definitia 3.2.4 Vom spune ca functia h : (0,00) — R are proprietatea P,,
unde pp € R, daca ezista xog > 0 astfel incat h (x) > 0 pentru orice x > xo, h

a:h/(a:) _
h@ M

este diferentiabila pe (xg,00) gi lim
Tr—r00
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Corolar 3.2.5 Fie h : (0,00) — R o funclie cu proprietatea P,. Fie de
asemenea k € NU{0}, A, BCNgsiv:AXx B —[0,00) astfel incat functia
sa sumatorie dubla este echivalenta cu h. Atunci:

(i)pentru orice functie integrabila Riemann f :[0,1] — R avem urmdtoarea
egalitate

ggggoﬁ > f(%) v(i,j>=/olf<a:>dx.

ij<z, (i.j)EAXB

(i1) Daca w : [0,1] — R este integrabila Riemann, vy : [0,1] — [0,1], ...,
v 1 [0, 1] = [0, 1] sunt functii continue cu vy (1)---vg (1) # 0 avem urmatoarea
egalitate

ij<e, (i,j)EAxB

_ /0 (@ vy (1) - - vy (1))da.

(11i) Daca v : [0,1] — R este integrabila Riemann, vy : [0,1] — R, ...,
v 1 [0,1] = R sunt functii continue atunci avem urmdatoarea egalitate

i, 2 () () e () e

ij<z, (,5)

= U1(1)"'Uk(1)/0 vo () dx.

In continuare vom da exemple non-triviale de functii pentru care gasim
evaluari asimptotice ale functiilor lor sumatorii duble. Pentru aceasta avem
nevoie de urmatorul rezultat a lui E. Landau din 1900, a se vedea [19, p. 28]
sau [20, paginile 203-205].

Teorema 3.2.6 Fie F' : (0,00) x (0,00) — R astfel incat F (v,z) > 0
Elvz) ~ F.2) pentru 2 < v <V < x gi F(2,z) =

Inv - Inv

pentru 1 < v < x;
z F(u,z)

0( o o du).

Atunci 3 F (p,a) « [ Eoatl gy,

2 Inu
p<z

Propozitia 3.2.7 Avem urmatoarele evaluari asimptotice:
(1) card({(i,7) e Nx N |ij <z}) ~zlnzx.

(11) card{(p,j) € Nx N |pj <z, p prim} «~zln(lnz).

(iii) card{(p,q) € N x N | pg <z, p prim, q prim} « Zein(no)

Inz
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Din Corolarul 3.2.5 si Propozitia 3.2.7 avem

Corolar 3.2.8 Pentru orice functie integrabila Riemann f : [0,1] — R avem
urmatoarele egalitat

s X (7)) = [rewe

ij<zx, i natural, j natural

. 1 pj B 1 '
ach—{goxln(lnx) Z f(;) - /Of(:c)dx,

pj<x, p prim, j natural

. Inz q !
xh—gloxln(ln:c) Z f(?) - 2/0 /() de.

pg<z, p prim, q prim

Corolar 3.2.9 Fie k € NU{0}.

(i) Daca w : [0,1] — R este integrabila Riemann, vy : [0,1] — [0,1], ...,
vk ¢ [0,1] = [0, 1] sunt functii continue cu vy (1) - - - v (1) # 0, atunci avem
urmatoarele egalitat

. 1 ij Iny (4j) Iny, (i5)
] o, e Y I k)
xi%o xlnx Z v ( T i ( In; x Uk In, x

ij<x, i natural, j natural

= /Olw(x oy (1) - - (1))da;
2t 5 C) e ()

pj<z, p prim, j natural

= /0 w(@-vy (1) - v (1))da;

_ Inx P4 Iy (pg) Iny, (pg)
lim ——— L e
2500 7 1In (Inx) Z “ ( z ( In; z vk Ing

pg<z, p prim, q prim

= 2/0 w(xz- vy (1) v (1))de.

(i) Daca vy : [0,1] — R este integrabila Riemann, vy : [0,1] — R, ...,
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vk 1 [0,1] = R sunt functii continue, atunci avem urmatoarele egalitati

. 1 ij Iny (ij) Ing, (i5)
xh—{go zlnzx Z Yo (Z) v ( Iz ) Ok In; =

ij<x, i natural, j natural

_ U1<1)---vk(1)/0 vo () da;

. 1 pj Iny (pj) Iny, (pj)
lim ———— 2 e
voeo 10 (Inx) Z o ( x ) v ( Iny vk Ing

pj<z, p prim, j natural

= v (1) v (1)/0 vo () dx;

. Inz rq In; (pg) Iny, (pq)
lim ——— s e
2500 7 In (Inx) Z v ( x > Y ( In; vk Ing

pq<z, p prim, q prim

= 2u (1) -y (1)/0 vo () d.

Rezultatul urmator este de alt tip decat cele demonstrate mai sus.

Corolar 3.2.10 Fie k € NU{0}. Atunci:
(1) pentru orice functie integrabila Riemann f :[0,1] — R avem urmdtoarea

egalitate N X
lim %Zf (%) d(i)d(j) = é/o f (z) da.

(ii) Daca w : [0,1] — R este integrabila Riemann, vy : [0,1] — [0,1], ...,
v 1 [0, 1] = [0, 1] sunt functii continue cu vy (1)---vg (1) # 0 avem urmatoarea
egalitate

b b (2 (52 (32 s

1<z

_ é/o (@ o (1) - - v (1))da.

(11i) Daca vy : [0,1] — R este integrabila Riemann, vy : [0,1] — R, ...,
v+ [0, 1] = R sunt functii continue avem urmatoarea egalitate




3.2.2 Rezultate de tip dublu Riemann-Radoux

In continuare vom demonstra ceea ce noi numim rezultate duble de tip
Riemann-Radoux, a se vedea [4, 27]. De data aceasta, ne concentram in
principal pe unele cazuri particulare. Din Teorema 5 din [4] deducem

Corolar 3.2.11 Fie h : (0,00) = R o functie cu proprietatea P,, p €
R—{0}, ABCNgiv:Ax B — [0,00) astfel incat functia sa sumatorie
dubla este echivalenta cu h. Atunci:

(i) pentru orice functie integrabila Riemann f :[0,1] — R avem urmdatoarea
egalitate

X ) ) () )
0

T—00 xl=rh (m)

(i1) Daca pn € (1,00), pentru orice functie f : [0,1] — R astfel incit x —
oL f () este integrabild Riemann avem urmdtoarea egalitate
> f(#)lig)

. ij<a, (i))eAxB
lim

lim Ao = ,LL/O o' f (z) dx.

In continuare vom demonstra cateva exemple concrete ale Corolarului

3.2.11.

Corolar 3.2.12 Pentru orice functie f : [0,1] — R astfel incit x — xf (x)
este integrabila Riemann, avem urmdatoarea egalitate

> (2) eli)e())

lim 252 _ % l zf (x)dx

2500 22lnz B '
R IOIC R

1. 1)ST _ 0 d )

lim. . 5 /0 af (z)dx
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