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Mulţumesc familiei mele pentru ı̂ncurajările şi susţinerea pe care mi-au
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Prefaţă . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Rezultate clasice ı̂n teoria analitică a numerelor 5
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3 Evaluări asimptotice pentru unele sume duble din teoria nu-
merelor 18
3.1 Introducere şi context . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Rezultate principale . . . . . . . . . . . . . . . . . . . . . . . . 20
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Prefaţă

Lucrarea de faţă concepută drept teză ı̂n vederea obţinerii titlului de doctor
ı̂n matematică, trateaza problematica evaluarilor asimptotice in teoria ana-
litica a numerelor.

Prezenta teză de doctorat este structurată ı̂n trei capitole pe care le vom
prezenta pe scurt ı̂n continuare.

Primul capitol cuprinde definiţii, noţiuni introductive şi rezultate nece-
sare dezvoltărilor ulterioare. Unele rezultate şi demonstraţii sunt inspirate
şi detaliate din bibliografia precizată, altele aparţin autoarei. Tot ı̂n acest
capitol sunt generalizate o serie de rezultate binecunoscute ı̂n literatura de
specialitate.

În al doilea capitol sunt prezentate rezultatele centrale ale acestei teze de
doctorat. Majoritatea rezultatelor din acest capitol apar ı̂n articolul: ”New
extensions of some classical theorems in number theory”, publicat de autor
ı̂mpreună cu domnul profesor universitar doctor D. Popa ı̂n ”Journal of Num-
ber Theory” (vezi [4]). Rezultatele din acest capitol generalizează o serie de
teoreme celebre din teoria analitică a numerelor, cum ar fi faimoasa teoremă
a lui Pölya bazată pe teorema numerelor prime, ca şi un rezultat surprinzător
a lui Radoux publicat ı̂n 1977. Menţionăm că un rezultat din acest capitol,
enunţat fără demonstraţie ı̂n articolul din J.N.T. este demonstrat ı̂n această
teză. Deoarece ı̂n articolul din J.N.T. am prezentat ca aplicaţii numai pe
acelea referitoare la numerele prime, lăsând cititorului să formuleze posibile
aplicaţii la rezultatul lui Radoux, ı̂n prezenta teză am prezentat şi o serie de
generalizări ale acestui rezultat.

Cel de al treilea capitol cuprinde rezultate trimise spre posibila publicare
la ”International Journal of Number Theory” de către autoare ı̂mpreună cu
conducătorul de doctorat Dumitru Popa. În acest capitol indicăm o metodă
de a obţine evaluări asimptotice pentru sume duble plecând de la evaluări
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asimptotice pentru sume simple. Folosind procedeul indicat ı̂n teză arătăm
că toate rezultatele din articolul [4] pot fi utilizate pentru a obţine evaluări
asimptotice pentru sume duble. În acest sens prezentăm o serie de rezultate
de tip dublu Pölya-Riemann, respectiv de tip dublu Riemann-Radoux.
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Capitolul 1

Rezultate clasice ı̂n teoria
analitică a numerelor

Următorul rezultat a apărut ca urmare a discuţiei cu conducătorul de doc-
torat, D. Popa. Din câte cunoaştem el nu apare ı̂n literatura de specialitate.

Lema 1.0.1 Fie f : [2,∞) → R o funcţie arbitrară. Definim R : [2,∞) → R

prin

R(x) =
∑

p≤x

f(p).

Atunci pentru orice x ∈ [2,∞) are loc egalitatea

∑

p≤x

f(p)

ln p
=

x∑

k=2

R(k)−R(k − 1)

ln k
.

Următorul rezultat este util ı̂n ı̂nţelegerea demonstraţiilor unor teoreme şi
mi-a fost sugerat de conducătorul de doctorat, D. Popa. Din câte cunoaştem,
el nu apare ı̂n literatura de specialitate.

Propoziţia 1.0.1 Fie h : N × N → R o funcţie arbitrară. Pentru orice
x ≥ 1 este adevărată următoarea egalitate

∑

n≤x

∑

d|n

h
(

d,
n

d

)

=
∑

ij≤x

h (i, j) .
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Capitolul 2

Extinderi pentru anumite
teoreme clasice din teoria
numerelor

2.1 Rezultate preliminare

Reamintim binecunoscuta teoremă a lui Riemann.
Fie f : [0, 1] → R o funcţie integrabilă Riemann. Atunci:

lim
n→∞

1

n

n∑

k=1

f

(
k

n

)

=

∫ 1

0

f(x)dx.

Într-un articol clasic din 1917, vezi [24], bazat pe teorema numerelor prime,
Pölya a arătat că dacă f : [0, 1] → R este o funcţie integrabilă Riemann pe
[0, 1], atunci

lim
x→∞

ln x

x

∑

p≤x, p prime

f
(p

x

)

=

∫ 1

0

f (x) dx.

În 1977, vezi[27], Radoux a arătat că

lim
n→∞

1

n2

n∑

k=1

f

(
k

n

)

ϕ (k) =
6

π2

∫ 1

0

xf (x) dx,

pentru orice funcţie f : [0, 1] → R astfel ı̂ncât xf (x) este continuă pe [0, 1],
ϕ este funcţia indicator a lui Euler, vezi de asemenea [16] şi [22].
În acest capitol vom da generalizarea acestor rezultate şi vom arăta că, deşi
aparent sunt rezultate diferite, acestea spun acelaşi lucru, vezi Theorem 2.2.1,
Theorem 2.2.5, Theorem 2.2.6, Corollary 2.2.7 şi Theorem 2.2.8. Abordarea
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noastră este următoarea: ı̂n primul rând, vom demonstra rezultatele pentru
polinoame, apoi pentru funcţii continue şi la sfârşit pentru funcţii integrabile
Riemann.
Rezultatele au fost publicate ı̂n articolul din J.N.T., vezi [4].

În scopul de a simplifica prezentarea, vom introduce următoarea definiţie.

Definiţia 2.1.1 Vom spune că funcţia h : (0,∞) → R are proprietatea Pµ,
cu µ ∈ R, dacă există x0 > 0 cu h (x) > 0 pentru orice x ≥ x0, h este

derivabila pe (x0,∞) şi lim
x→∞

xh
′

(x)
h(x)

= µ.

Definiţia 2.1.2 Fie g : N → [0,∞) o funcţie. Funcţia G : (0,∞) → [0,∞)
definită prin G (x) =

∑

n≤x

g(n), se numeşte funcţia sumatorie a lui g, vezi [3,

page 39].

Următorul rezultat apare ı̂n articolul publicat ı̂n ”Journal of Number
Theory”, vezi [4] (Proposition 1).

Propoziţia 2.1.3 Fie f : (0,∞) → R de două ori derivabilă pe (0,∞) şi de
asemenea există x1 > 0 cu f (x) > 0 şi f ′ (x) 6= 0 pentru orice x ≥ x1 şi

lim
x→∞

xf ′ (x)

f (x)
= C1 ∈ R, lim

x→∞

xf ′′ (x)

f ′ (x)
= C2 ∈ R.

Fie h : (0,∞) → R o funcţie cu proprietatea Pµ şi g : N → [0,∞) astfel ı̂ncât
funcţia sa sumatorie este echivalentă cu h. Dacă C1+µ > 0 şi C2+µ > −1,
atunci lim

x→∞

1
h(x)f(x)

∑

n≤x

f (n) g(n) = 1− C1

C2+µ+1
.

Următorul rezultat apare ı̂n articolul publicat ı̂n J.N.T., vezi [4] (Corol-
lary 1).

Corolar 2.1.4 Fie h : (0,∞) → R o funcţie cu proprietatea Pµ şi
g : N → [0,∞) astfel ı̂ncât funcţia sumatorie este echivalentă cu h. De
asemenea fie k ∈ N ∪ {0}. Atunci pentru orice α1, ..., αk ∈ R şi orice
α0 > −µ, avem

lim
x→∞

1

xα0 (ln1 x)
α1 · · · (lnk x)

αk h(x)

∑

n≤x

nα0 (ln1 n)
α1 ···(lnk n)

αk g (n) =
µ

α0 + µ
.

Următorul rezultat, care este independent, arată că, ı̂n ipoteze naturale,
ı̂n scopul de a demonstra o evaluare asimptotică pentru funcţii continue, este
suficient a dovedi aceeaşi evaluare asimptotică ı̂ntr-o mulţime densă. Acest
rezultat apare ı̂n articolul publicat ı̂n J.N.T. vezi [4], (Theorem 1).
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Teorema 2.1.5 Fie k un număr natural, a > 0 şi T : C
(

[0, 1]k
)

→ F [a,∞)

o funcţională liniară cu proprietatea că există x0 ≥ a şi L > 0 astfel ı̂ncât

|(T (f)) (x)| ≤ L ‖f‖u pentru orice f ∈ C
(

[0, 1]k
)

şi orice x ≥ x0

şi V : C
(

[0, 1]k
)

→ R o funcţională liniară şi mărginită. În plus, pre-

supunem că există A ⊂ C
(

[0, 1]k
)

, A densă ı̂n C
(

[0, 1]k
)

, astfel ı̂ncât

lim
x→∞

(T (f)) (x) = V (f) pentru orice f ∈ A.

Atunci

lim
x→∞

(T (f)) (x) = V (f) pentru orice f ∈ C
(

[0, 1]k
)

.

Următorul rezultat apare ı̂n articolul publicat ı̂n J.N.T., vezi [4], (Lemma
1), la data publicării articolului autorii negăsind rezultatul ı̂n mod explicit.
Ulterior, ei au găsit că rezultatul este folosit, tot fără demonstraţie, ı̂n [23]
(Theorem 1, pag.4) şi ı̂n [18] (Theorem 1.1, pag.2-3).

Lema 2.1.1 Fie f : [0, 1] → R o funcţie integrabilă Riemann. Atunci pentru
orice ε > 0 există două funcţii continue ϕ, ψ : [0, 1] → R astfel ı̂ncât

ϕ (x) ≤ f (x) ≤ ψ (x) , ∀x ∈ [0, 1] şi

∫ 1

0

(ψ (x)− ϕ (x)) dx ≤ ε.

2.2 Rezultatele principale

Vom ı̂ncepe cu un rezultat care poate fi considerat ca o versiune multidimen-
sionala a teoremei funcţiilor continue a lui Pölya, vezi Theorem 2.2.5, Theo-
rem 2.2.6, Corollary 2.2.7. Rezultatul apare ı̂n lucrarea publicată de autoare
ı̂mpreună cu conducătorul de doctorat, D.Popa, vezi [4], ca [4], (Theorem 2).

Teorema 2.2.1 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi
g : N → [0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă cu h. De
asemenea fie k ∈ N ∪ {0}.
Atunci pentru orice funcţie continuă f : [0, 1]k+1 → R, avem

lim
x→∞

1

h(x)

∑

n≤x

f

(
n

x
,
ln1 n

ln1 x
, ...,

lnk n

lnk x

)

g(n) =

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.
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Theorem 2.2.1 ne sugereaza următoarea definitie.

Definiţia 2.2.2 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi
g : N → [0,∞) astfel ı̂ncât funcţia sumatorie este echivalentă cu h. Pentru
orice k ∈ N ∪ {0} , vom nota cu Fk

(
[0, 1]k+1, g, h

)
clasa tuturor funcţiilor

integrabile Riemann f : [0, 1]k+1 → R cu proprietatea că

lim
x→∞

1

h(x)

∑

n≤x

f

(
n

x
,
ln1 n

ln1 x
, ...,

lnk n

lnk x

)

g(n) =

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

Din Theorem 2.2.1 obţinem următorul rezultat care apare ı̂n articolul
publicat ı̂n J.N.T., vezi [4], (Corollary 2).

Corolar 2.2.3 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi g : N →
[0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă cu h. Atunci pentru
orice k ∈ N ∪ {0} , avem

C
(
[0, 1]k+1

)
⊂ Fk

(
[0, 1]k+1, g, h

)
⊂ R

(
[0, 1]k+1

)
.

Următorul exemplu arată că pentru k ∈ N incluziunea

Fk

(
[0, 1]k+1, g, h

)
⊂ R

(
[0, 1]k+1

)

este, ı̂n general, stricta, vezi [4].
Următorul rezultat apare ı̂n articolul publicat ı̂n J.N.T., vezi [4], (Propo-

sition 2).

Propoziţia 2.2.4 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi
g : N → [0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă cu h. Mai

departe presupunem că lim
n→∞

g(n)
h(n)

= 0. De exemplu g (n) = 1, ∀n ∈ N şi

h (x) = x, ∀x > 0. Fie k ∈ N. Atunci f : [0, 1]k+1 → R definită că

f (x0, x1, ..., xk) = χ{1} (x1)

este integrabilă Riemann pe [0, 1]k+1 şi

lim
x→∞

1

h(x)

∑

n≤x

f

(
n

x
,
ln1 n

ln1 x
, ...,

lnk n

lnk x

)

g(n) = 0;

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx = 1.

În continuare, vom da unele exemple netriviale de funcţii care aparţin
claselor Fk

(
[0, 1]k+1, g, h

)
. Acest rezultat apare ı̂n articolul publicat ı̂n J.N.T.,

vezi [4], (Theorem 3).
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Teorema 2.2.5 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi fie g :
N → [0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă cu h. De
asemenea fie k ∈ N ∪ {0}. Atunci pentru orice funcţie integrabilă Riemann
ω : [0, 1] → R, orice funcţii continue v1 : [0, 1] → [0, 1], ..., vk : [0, 1] → [0, 1]
cu v1 (1) · · · vk (1) 6= 0, funcţia f : [0, 1]k+1 → R definită ca

f (x0, x1, ..., xk) = ω (x0v1 (x1) · · · vk (xk))

aparţine clasei Fk

(
[0, 1]k+1, g, h

)
.

Următorul rezultat apare ı̂n articolul publicat ı̂n J.N.T., vezi [4], (Theo-
rem 4).

Teorema 2.2.6 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi fie
g : N → [0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă cu h. De
asemenea fie k ∈ N ∪ {0}. Dacă v0 : [0, 1] → R este integrabilă Riemann,
v1 : [0, 1] → R, ..., vk : [0, 1] → R pentru orice funcţii continue, atunci
funcţia f : [0, 1]k+1 → R definită prin

f (x0, x1, ..., xk) = v0 (x0) v1 (x1) · · · vk (xk)

aparţine clasei Fk

(
[0, 1]k+1, g, h

)
.

Din Teorema 2.2.5 şi Teorema 2.2.6 avem, ı̂n particular următorul rezultat
care apare ı̂n articolul publicat ı̂n J.N.T., vezi [4], (Corollary 3).

Corolar 2.2.7 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi fie
g : N → [0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă cu h. Fie
k ∈ N ∪ {0}. Atunci:
(i) F0 ([0, 1], g, h) = R ([0, 1]) i.e. pentru orice funcţie integrabilă Riemann
f : [0, 1] → R avem

lim
x→∞

1

h(x)

∑

n≤x

f
(n

x

)

g(n) =

∫ 1

0

f (x) dx.

(ii) Dacă ω : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → R, ...,
vk : [0, 1] → R sunt funcţii continue cu v1 (1) · · · vk (1) 6= 0 avem

lim
x→∞

1

h(x)

∑

n≤x

ω

(
n

x
· v1

(
ln1 n

ln1 x

)

· · · vk
(
lnk n

lnk x

))

g(n) =

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx.
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(iii) Dacă v0 : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → R, ...,
vk : [0, 1] → R sunt funcţii continue avem

lim
x→∞

1

h(x)

∑

n≤x

v0

(n

x

)

v1

(
ln1 n

ln1 x

)

···vk
(
lnk n

lnk x

)

g(n) = v1 (1)···vk (1)
∫ 1

0

v0 (x) dx.

Următorul rezultat este o noua extindere a teoremei lui Radoux. El apare
ı̂n articolul publicat ı̂n J.N.T., vezi [4], (Theorem 5).

Teorema 2.2.8 Fie h : (0,∞) → R o funcţie cu proprietatea Pµ, cu µ ∈
R−{0} şi fie g : N → [0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă
cu h. De asemenea fie k ∈ N ∪ {0}. Atunci:
(i) pentru orice α1, ..., αk ∈ R, şi orice funcţie continuă ϕ : [0, 1]k+1 → R

avem

lim
x→∞

∑

n≤x

ϕ
(

n
x
, ln1 n
ln1 x

, ..., lnk n
lnk x

)

n1−µ (ln1 n)
α1 · · · (lnk n)

αk g (n)

x1−µ (ln1 x)
α1 · · · (lnk x)

αk h (x)

= µ

∫ 1

0

ϕ(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

(ii) Dacă µ ∈ (1,∞), pentru orice funcţie f : [0, 1]k+1 → R cu proprietatea
că (x0, x1, ..., xk) → x

µ−1
0 f (x0, x1, ..., xk) este continuă pe [0, 1]k+1 şi oricare

ar fi
α1, ..., αk ∈ R avem

lim
x→∞

∑

n≤x

f
(

n
x
, ln1 n
ln1 x

, ..., lnk n
lnk x

)

(ln1 n)
α1 · · · (lnk n)

αk g (n)

(ln1 x)
α1 · · · (lnk x)

αk h (x)

= µ

∫ 1

0

xµ−1f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

(iii) Dacă µ ∈ (1,∞), pentru orice funcţie f : [0, 1]k+1 → R cu proprietatea
că (x0, x1, ..., xk) → x

µ−1
1 f (x0, x1, ..., xk) este continuă pe [0, 1]k+1 şi oricare

ar fi α1, ..., αk ∈ R avem

lim
x→∞

∑

n≤x

f
(

n
x
, ln1 n
ln1 x

, ..., lnk n
lnk x

)

n1−µ (ln1 n)
µ−1 (ln1 n)

α1 · · · (lnk n)
αk g (n)

x1−µ (ln1 x)
µ−1 (ln1 x)

α1 · · · (lnk x)
αk h (x)

= µ

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.
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(iv) pentru orice funcţie integrabilă Riemann ω : [0, 1] → R, oricare ar fi
funcţiile continue v1 : [0, 1] → [0, 1], ..., vk : [0, 1] → [0, 1] cu v1 (1) · · ·vk (1) 6=
0 avem

lim
x→∞

∑

n≤x

ω
(

n
x
· v1

(
ln1 n
ln1 x

)

· · · vk
(

lnk n
lnk x

))

n1−µ (ln1 n)
α1 · · · (lnk n)

αk g (n)

x1−µ (ln1 x)
α1 · · · (lnk x)

αk h (x)

= µ

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx.

(v) pentru orice funcţie integrabilă Riemann v0 : [0, 1] → R, oricare ar fi
funcţiile continue v1 : [0, 1] → R, ..., vk : [0, 1] → R

lim
x→∞

∑

n≤x

n1−µv0
(
n
x

)
(ln1 n)

α1 v1

(
ln1 n
ln1 x

)

· · · (lnk n)
αk vk

(
lnk n
lnk x

)

g (n)

x1−µ (ln1 x)
α1 · · · (lnk x)

αk h (x)

= µv1 (1) · · · vk (1)
∫ 1

0

v0 (x) dx.

(vi) Dacă µ ∈ (1,∞), pentru orice funcţie u0 : [0, 1] → R astfel ı̂ncât
x → xµ−1u0 (x) este integrabilă Riemann, oricare ar fi funcţiile continue
v1 : [0, 1] → R, ..., vk : [0, 1] → R

lim
x→∞

∑

n≤x

u0
(
n
x

)
(ln1 n)

α1 v1

(
ln1 n
ln1 x

)

· · · (lnk n)
αk vk

(
lnk n
lnk x

)

g (n)

(ln1 x)
α1 · · · (lnk x)

αk h (x)

= µv1 (1) · · · vk (1)
∫ 1

0

xµ−1u0 (x) dx.

Vom da ı̂n continuare câteva exemple, ca aplicaţii la Teorema 2.2.8. Din
câte cunoaştem rezultatele nu apar ı̂n literatura de specialitate.

Pentru ϕ : N → [0,∞), funcţia indicator a lui Euler, avem:

∑

n≤x

ϕ (n) v
3

π2
x2 când x→ ∞.

Propoziţia 2.2.9 Fie k ∈ N ∪ {0}. Atunci:
(i) pentru orice funcţie f : [0, 1]k+1 → R cu proprietatea că
(x0, x1, ..., xk) → x0f (x0, x1, ..., xk) este continuă pe [0, 1]k+1 şi oricare ar fi
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α1, ..., αk ∈ R avem

lim
x→∞

∑

n≤x

f
(

n
x
, ln1 n
ln1 x

, ..., lnk n
lnk x

)

(ln1 n)
α1 · · · (lnk n)

αk ϕ (n)

(ln1 x)
α1 · · · (lnk x)

αk x2

=
6

π2

∫ 1

0

xf(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

(ii) pentru orice funcţie f : [0, 1]k+1 → R cu proprietatea că
(x0, x1, ..., xk) → x1f (x0, x1, ..., xk) este continuă pe [0, 1]k+1 şi oricare ar fi
α1, ..., αk ∈ R avem

lim
x→∞

∑

n≤x

f
(

n
x
, ln1 n
ln1 x

, ..., lnk n
lnk x

)

n−1 (ln1 n) (ln1 n)
α1 · · · (lnk n)

αk ϕ (n)

x (ln1 x) (ln1 x)
α1 · · · (lnk x)

αk

=
6

π2

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

(iii) pentru orice funcţie u0 : [0, 1] → R astfel ı̂ncât x → xu0 (x) este
integrabilă Riemann, oricare ar fi funcţiile continue v1 : [0, 1] → R, ...,
vk : [0, 1] → R şi oricare ar fi α1, ..., αk ∈ R avem

lim
x→∞

∑

n≤x

u0
(
n
x

)
(ln1 n)

α1 v1

(
ln1 n
ln1 x

)

· · · (lnk n)
αk vk

(
lnk n
lnk x

)

ϕ (n)

(ln1 x)
α1 · · · (lnk x)

αk x2

=
6

π2
v1 (1) · · · vk (1)

∫ 1

0

xu0 (x) dx.

Pentru ϕ : N → [0,∞), funcţia indicator a lui Euler, avem:

∑

n≤x

ϕ (n)

nα
∼ 6x2−α

π2(2− α)
când x→ ∞ şi α < 1.

Propoziţia 2.2.10 Fie k ∈ N ∪ {0}. Atunci:
(i) pentru orice funcţie f : [0, 1]k+1 → R cu proprietatea că
(x0, x1, ..., xk) → x1−α

0 f (x0, x1, ..., xk) este continuă pe [0, 1]k+1 şi oricare ar
fi α1, ..., αk ∈ R şi α < 1 avem

lim
x→∞

∑

n≤x

f
(

n
x
, ln1 n
ln1 x

, ..., lnk n
lnk x

)

(ln1 n)
α1 · · · (lnk n)

αk ϕ(n)
nα

(ln1 x)
α1 · · · (lnk x)

αk x2−α

=
6

π2

∫ 1

0

x1−αf(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.
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(ii) pentru orice funcţie f : [0, 1]k+1 → R cu proprietatea că
(x0, x1, ..., xk) → x1−α

1 f (x0, x1, ..., xk) este continuă pe [0, 1]k+1 şi oricare ar
fi α1, ..., αk ∈ R şi α < 1 avem

lim
x→∞

∑

n≤x

f
(

n
x
, ln1 n
ln1 x

, ..., lnk n
lnk x

)

n−1 (ln1 n)
1−α (ln1 n)

α1 · · · (lnk n)
αk ϕ (n)

x (ln1 x)
1−α (ln1 x)

α1 · · · (lnk x)
αk

=
6

π2

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

(iii) pentru orice funcţie integrabilă Riemann v0 : [0, 1] → R, oricare
ar fi funcţiile continue v1 : [0, 1] → R, ..., vk : [0, 1] → R şi oricare ar fi
α1, ..., αk ∈ R avem

lim
x→∞

∑

n≤x

n−1v0
(
n
x

)
(ln1 n)

α1 v1

(
ln1 n
ln1 x

)

· · · (lnk n)
αk vk

(
lnk n
lnk x

)

ϕ (n)

x (ln1 x)
α1 · · · (lnk x)

αk

=
6

π2
v1 (1) · · · vk (1)

∫ 1

0

v0 (x) dx.

În continuare reamintim, vezi [6, 28]:
(i) o funcţie l : (0,∞) → R se numeşte funcţie cu variaţie lentă (̂ın sens

Karamata) dacă este măsurabilă, există x0 > 0 cu l (x) > 0 pentru orice

x ≥ x0 şi lim
x→∞

l(ax)
l(x)

= 1, ∀a > 0.

(ii) Fie µ ∈ R. funcţia h : (0,∞) → R se numeşte cu variaţie regulată cu
index µ dacă este măsurabilă şi există l : (0,∞) → R o funcţie cu variaţie
lentă astfel ı̂ncât h (x) = xµl (x), ∀x > 0.

În primul său raport asupra lucrării [4] referentul ne-a sugerat să studiem
legătura cu funcţiile cu variaţie lentă. Acest rezultat apare ı̂n articolul pub-
licat ı̂n J.N.T., vezi [4], (Lemma 2) şi este răspunsul pe care autorii l-au dat
referentului.

Lema 2.2.1 Fie h : (0,∞) → R o funcţie cu proprietatea Pµ, cu µ ∈ R−{0}
şi fie g : N → [0,∞) astfel ı̂ncât funcţia sa sumatorie este echivalentă cu h.
Atunci h cu variaţie regulată cu index µ.

2.3 Aplicaţii

În acest subcapitol, vom aplica rezultatele demonstrate mai sus i.e. Teo-
rema 2.2.1, Teorema 2.2.5, Teorema 2.2.6 şi Corolarul 2.2.7, pentru câteva
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funcţii aritmetice, binecunoscute ı̂n teoria numerelor, vezi [1, 3, 17, 20]. Ne
vom concentra numai asupra cazului corespunzător funcţiilor sumatorii peste
numerele prime.

În continuare vom nota cu P mulţimea tuturor numerelor prime şi cu
∑

p≤x

· · · pentru
∑

p≤x, p prime

· · ·.

Definiţia 2.3.1 Fie h : (0,∞) → R o funcţie cu proprietatea Pµ. Vom
spune că v : P → [0,∞) funcţia sa sumatorie peste numerele prime este
echivalentă cu h dacă şi numai dacă

∑

p≤x

v(p) ∼ h(x) când x→ ∞.

Următorul rezultat, care stabileşte o legătură ı̂ntre funcţia sumatorie
peste mulţimea numerelor naturale şi funcţia sumatorie peste mulţimea nu-
merelor prime, este probabil cunoscut, dar nu l-am găsit explicit ı̂n literatura
de specialitate. El apare ı̂n articolul publicat de autoare ı̂mpreună cu con-
ducătorul de doctorat D. Popa, vezi [4], fără demonstraţie. Demonstraţia
dată aici este inspirata din Landau, vezi [20, pag. 25].

Lema 2.3.1 Fie f : (0,∞) → (0,∞) astfel ı̂ncât
(

f(n)
lnn

)

n≥2
este un şir

descrescător şi seria
∞∑

n=2

f(n)
lnn

este divergentă. Atunci

∑

p≤x

f (p) v
∑

n≤x

f(n)
lnn

când x→ ∞.

Definiţia 2.3.2 Fie h : (0,∞) → R o funcţie cu proprietatea Pµ şi
v : P → [0,∞) astfel ı̂ncât funcţia sa sumatorie peste numerele prime este
echivalentă cu h. De asemenea fie k ∈ N∪{0}. Notam cu Fprime

k

(
[0, 1]k+1, v, h

)

clasa tuturor funcţiilor integrabile Riemann f : [0, 1]k+1 → R cu proprietatea
că

lim
x→∞

1

h(x)

∑

p≤x

f

(
p

x
,
ln1 p

ln1 x
, ...,

lnk p

lnk x

)

v(p) =

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

Rezultatul următor spune că dacă ştim un rezultat pentru fiecare funcţie
sumatorie peste mulţimea tuturor numerelor naturale, atunci putem obţine
un rezultat similar pentru fiecare funcţie sumatorie peste numerele prime.
Rezultatul a fost publicat ı̂n J.N.T., vezi [4], (proposition 3).

Propoziţia 2.3.3 Fie h : (0,∞) → R o funcţie cu proprietatea Pµ. Fie k ∈
N∪{0}. Dacă f ∈ Fk

(
[0, 1]k+1, g, h

)
pentru orice g : N → [0,∞) astfel ı̂ncât

funcţia sa sumatorie este echivalentă cu h, atunci f ∈ Fprime
k

(
[0, 1]k+1, v, h

)

pentru orice v : P → [0,∞) astfel ı̂ncât funcţia sa sumatorie peste mulţimea
numerelor prime este echivalentă cu h.
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Următorul rezultat este o generalizare a clasicei teoreme a lui Pölya.
Demonstraţia rezultă din Corolarul 2.2.7 şi Propoziţia 2.3.3. Rezultatul apare
ı̂n articolul din J.N.T., vezi [4], (Corollary 4).

Corolar 2.3.4 Fie h : (0,∞) → R o funcţie cu proprietatea P1 şi
v : P → [0,∞) astfel ı̂ncât funcţia sa sumatorie peste numerele prime este
echivalentă cu h. De asemenea fie k ∈ N ∪ {0}. Atunci:
(i) Fprime

0 ([0, 1], g, h) = R ([0, 1]) i.e. pentru orice funcţie integrabilă Rie-
mann f : [0, 1] → R avem

lim
x→∞

1

h(x)

∑

p≤x

f
(p

x

)

v(p) =

∫ 1

0

f (x) dx.

(ii) pentru orice funcţii continue f : [0, 1]k+1 → R

lim
x→∞

1

h(x)

∑

p≤x

f

(
p

x
,
ln1 p

ln1 x
, ...,

lnk p

lnk x

)

v(p) =

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

(iii) pentru orice funcţie integrabilă Riemann ω : [0, 1] → R, orice funcţii
continue v1 : [0, 1] → [0, 1], ..., vk : [0, 1] → [0, 1] cu v1 (1) · · · vk (1) 6= 0

lim
x→∞

1

h(x)

∑

p≤x

ω

(
p

x
· v1

(
ln1 p

ln1 x

)

· · · vk
(
lnk p

lnk x

))

v(p) =

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx.

(iv) pentru orice funcţie integrabilă Riemann v0 : [0, 1] → R, orice funcţii
continue v1 : [0, 1] → [0, 1], ..., vk : [0, 1] → [0, 1]

lim
x→∞

1

h(x)

∑

p≤x

v0

(p

x

)

v1

(
ln1 p

ln1 x

)

···vk
(
lnk p

lnk x

)

v(p) = v1 (1)···vk (1)
∫ 1

0

v0(x)dx.

În continuare, dăm câteva cazuri particulare pentru Corolarul 2.3.4. Ream-
intim că pentru v : P → [0,∞), v (p) = 1, funcţia sa sumatorie peste numerele
prime este π : (0,∞) → [0,∞), π (x) =

∑

p≤x

1 şi din teorema numerelor prime,

π(x) ∼ x
lnx

as x→ ∞, vezi [17, 20].
De asemenea, pentru v : P → [0,∞), v (p) = ln p, funcţia sa sumatorie

peste numerele prime este ϑ : (0,∞) → [0,∞), ϑ(x) =
∑

p≤x

ln p, prima funcţie
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a lui Chebyshev şi din teorema numerelor prime, ϑ (x) ∼ x când x → ∞,
vezi [17, 20].

Aplicând Corolarul2.3.4 pentru această funcţie obţinem următorul rezul-
tat care a fost publicat de către autoare ı̂mpreună cu conducătorul de doc-
torat D. Popa, ‘̂ın J.N.T. vezi [4], (corollary 5):

Corolar 2.3.5 Fie k ∈ N ∪ {0}. Atunci:
(i) pentru orice funcţie continuă f : [0, 1]k+1 → R,

lim
x→∞

ln x

x

∑

p≤x

f

(
p

x
,
ln1 p

ln1 x
, ...,

lnk p

lnk x

)

=

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx;

lim
x→∞

1

x

∑

p≤x

f

(
p

x
,
ln1 p

ln1 x
, ...,

lnk p

lnk x

)

ln p =

∫ 1

0

f(x, 1, ..., 1
︸ ︷︷ ︸

k-ori

)dx.

(ii) pentru orice funcţie integrabilă Riemann ω : [0, 1] → R şi orice funcţii
continue v1 : [0, 1] → [0, 1], ..., vk : [0, 1] → [0, 1] cu v1 (1) · · ·vk (1) 6= 0, avem

lim
x→∞

ln x

x

∑

p≤x

ω

(
p

x
· v1

(
ln1 p

ln1 x

)

· · · vk
(
lnk p

lnk x

))

=

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx;

lim
x→∞

1

x

∑

p≤x

ω

(
p

x
· v1

(
ln1 p

ln1 x

)

· · · vk
(
lnk p

lnk x

))

ln p

=

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx.

(iii) pentru orice funcţie integrabilă Riemann v0 : [0, 1] → R şi orice
funcţii continue v1 : [0, 1] → [0, 1], ..., vk : [0, 1] → [0, 1] ,

lim
x→∞

ln x

x

∑

p≤x

v0

(p

x

)

v1

(
ln1 p

ln1 x

)

· · · vk
(
lnk p

lnk x

)

= v1 (1) · · · vk (1)
∫ 1

0

v0(x)dx;

lim
x→∞

1

x

∑

p≤x

v0

(p

x

)

v1

(
ln1 p

ln1 x

)

· · · vk
(
lnk p

lnk x

)

ln p

= v1 (1) · · · vk (1)
∫ 1

0

v0(x)dx.
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Capitolul 3

Evaluări asimptotice pentru
unele sume duble din teoria
numerelor

3.1 Introducere şi context

Comportamentul asimptotic pentru diferite sume este una dintre problemele
fundamentale ı̂n analiza matematică, teoria numerelor şi nu numai . Rezul-
tate diferite şi profunde de acest tip pot fi găsite , de exemplu, ı̂n cărţile
lui Bateman-Diamond [3], Landau [20] şi Tenenbaum [31]. În continuare
vom indica o metodă de a obţine evaluări asimptotice pentru sume duble din
evaluările asimptotice pentru sume simple , Teorema 3.2.1, Propoziţia 3.2.2 şi
Corolarul 3.2.3. Ca aplicaţii arătăm că toate rezultatele din articolul scris de
autoare ı̂mpreună cu conducătorul de doctorat, Dumitru Popa, vezi [4] pot
fi folosite pentru a obţine unele evaluări asimptotice pentru sume duble, vezi
Corolarul 3.2.5. Folosind un rezultat vechi a lui Landau din 1900, am obţinut
un nou rezultat de tipul Pölya - Riemann pentru sume duble, vezi Corolarul
3.2.8, Corolarul 3.2.9. De asemenea, ca aplicaţie concretă prezentăm o serie
de rezultate care implică funcţia numărul divizorilor şi funcţia indicatorul
lui Euler, vezi Corolarul 3.2.10 şi Corolarul 3.2.12. O altă aplicaţie a rezul-
tatelor generale obţinute se referă la versiuni duble pentru rezultate de tip
Riemann-Radoux. Dacă h : (0,∞) → R este o funcţie pentru care exisă
x0 > 0 astfel ı̂ncât h (x) 6= 0 oricare ar fi x ≥ x0 vom spune că h este nenulă.
De asemenea dacă h : (0,∞) → R este nenulă şi g : N → R, vom spune că
funcţia sumatorie a lui g este echivalentă cu h dacă

∑

n≤x

g (n) v h (x).

Definiţia 3.1.1 Fie u : N× N → R o funcţie arbitrară. Funcţia
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G : (0,∞) → R definită ca G (x) =
∑

ij≤x

u (i, j) se numeşte funcţia dublă

sumatorie asociată lui u.
În mod similar, dacă A,B ⊆ N şi v : A × B → R este o funcţie arbitrară,
funcţia sumatorie dublă GA,B : (0,∞) → R ca GA,B (x) =

∑

ij≤x, (i,j)∈A×B

v (i, j).

Dacă h : (0,∞) → R este nenulă, A,B ⊆ N şi v : A×B → R, vom spune
că funcţia dublă sumatorie a lui v este echivalentă h dacă

∑

ij≤x, (i,j)∈A×B

v (i, j) v h (x).

Propoziţia 3.1.2 Fie u : N × N → R o funcţie arbitrară. Oricare ar fi
x ≥ 1 avem următoarea egalitate:

∑

ij≤x

u (i, j) =
∑

n≤x

∑

d|n

u
(

d,
n

d

)

.

Cu alte cuvinte, dacă g : N → R definită ca g (n) =
∑

d|n

u
(
d, n

d

)
, atunci

funcţia sumatorie dublă a lui u este egală cu funcţia sumatorie a lui g.

Corolar 3.1.3 (a) Fie f : N → R o funcţie arbitrară. Oricare ar fi x ≥ 1
avem următoarea egalitate

∑

n≤x

f (n) d (n) =
∑

ij≤x

f (ij).

(b) Fie f, g : N → R două funcţii arbitrare. Atunci, oricare ar fi x ≥ 1
avem următoarea egalitate

∑

n≤x

∑

d|n

f (d) g
(
n
d

)
=

∑

ij≤x

f (i) g (j); cu alte cuvinte,

dacă f ∗ g este convoluţia Dirichlet dintre f şi g, atunci
∑

n≤x

(f ∗ g) (n) =
∑

ij≤x

f (i) g (j).

În continuare vom afla unele evaluări asimptotice pentru funcţia numărul
divizorilor şi funcţia indicatorul lui Euler.

Propoziţia 3.1.4 Avem următoarea evaluare asimptotică pentru funcţia numărul
divizorilor:

∑

n≤x

d (n) lnn

n
=

1

3
ln3 x+ C ln2 x+O (ln x) ,

unde C este constanta lui Euler.
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Propoziţia 3.1.5 Avem următoarele evaluări asimptotice:
(i)

∑

ij≤x

ϕ(i)ϕ(j) =
18x2 ln x

π4
+

(36C − 6Aπ2 − 9) x2

π4
+O(x

√
x ln x),

unde C este constanta lui Euler şi A =
∞∑

n=1

µ(n) lnn

n2 .

(ii)
∑

ij≤x

d (i) d (j) =
x ln3 x

6
+

(4C − 1) x ln2 x

2
+O (x ln x) ,

unde C este constanta lui Euler.
(iii)

∑

ij≤x

d (i)ϕ (j) =
π2x2

12
+O

(
x
√
x ln x

)

.

3.2 Rezultate principale

Următorul rezultat arată că, dacă ştim o evaluare asimptotică pentru o sumă
de o ”singură variabilă ” putem obţine o evaluare asimptotică pentru o sumă
de ”două variabile ”.

Teorema 3.2.1 Fie h : (0,∞) → R o funcţie, eventual nenulă, şi fie k ∈
N ∪ {0}. Dacă f : [0, 1]k+1 → R este o funcţie cu proprietatea că există

lim
x→∞

1

h(x)

∑

n≤x

f

(
n

x
,
ln1 n

ln1 x
, ...,

lnk n

lnk x

)

g(n) = L (f) ∈ R

oricare ar fi g : N → R astfel ı̂ncât funcţia sa sumatorie este echivalentă cu
h, unde L (f) depinde doar de f , atunci

lim
x→∞

1

h (x)

∑

ij≤x

f

(
ij

x
,
ln1 (ij)

ln1 x
, ...,

lnk (ij)

lnk x

)

u (i, j) = L (f)

oricare ar fi u : N × N → R astfel ı̂ncât funcţia sa sumatorie dublă este
echivalentă cu h.

Rezultatul următor, euristic vorbind, spune că dacă ştim un rezultat pen-
tru orice funcţie summatorie dublă pe N×N, atunci putem deduce un rezul-
tat similar pentru orice funcţie summatorie dublă peste produsul cartezian a
două submulţimi de numere naturale.
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Propoziţia 3.2.2 Fie h : (0,∞) → R o funcţie care este eventual nenulă
şi fie k ∈ N ∪ {0}. Dacă f : [0, 1]k+1 → R este o funcţie cu proprietatea că
există

lim
x→∞

1

h(x)

∑

ij≤x

f

(
ij

x
,
ln1 (ij)

ln1 x
, ...,

lnk (ij)

lnk x

)

u(i, j) = L (f) ∈ R

pentru orice u : N × N → R pentru care funcţia sa sumatorie dublă este
echivalentă cu h, unde L (f) depinde doar de f , atunci

lim
x→∞

1

h(x)

∑

ij≤x, (i,j)∈A×B

f

(
ij

x
,
ln1 (ij)

ln1 x
, ...,

lnk (ij)

lnk x

)

v(i, j) = L (f)

pentru orice A,B ⊆ N şi orice v : A × B → R pentru care funcţia sa
sumatorie dublă este echivalentă cu h.

Din Teorema 3.2.1 şi Propoziţia 3.2.2 avem următorul corolar.

Corolar 3.2.3 Fie h : (0,∞) → R o funcţie eventual nenulă şi fie k ∈
N ∪ {0}. Dacă f : [0, 1]k+1 → R este o funcţie cu proprietatea că există

lim
x→∞

1

h(x)

∑

n≤x

f

(
n

x
,
ln1 n

ln1 x
, ...,

lnk n

lnk x

)

g(n) = L (f) ∈ R

pentru orice g : N → R a cărei funcţie sumatorie dublă este echivalentă cu
h, unde L (f) depinde doar de f , atunci

lim
x→∞

1

h(x)

∑

ij≤x, (i,j)∈A×B

f

(
ij

x
,
ln1 (ij)

ln1 x
, ...,

lnk (ij)

lnk x

)

v(i, j) = L (f)

pentru orice A,B ⊆ N şi orice v : A × B → R pentru care funcţia sa
sumatorie dublă este echivalentă cu h.

3.2.1 Rezultate de tip dublu Pölya-Riemann

În continuare, vom demonstra unele rezultate care, din motive evidente le
vom numi rezultate duble de tip Pölya-Riemann, a se vedea [4, 24]. Pentru
aceasta reamintesc următoarea definiţie, a se vedea [4] [Definitie 1].

Definiţia 3.2.4 Vom spune că funcţia h : (0,∞) → R are proprietatea Pµ,
unde µ ∈ R, dacă există x0 > 0 astfel ı̂ncât h (x) > 0 pentru orice x ≥ x0, h

este diferenţiabilă pe (x0,∞) şi lim
x→∞

xh
′

(x)
h(x)

= µ.
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Corolar 3.2.5 Fie h : (0,∞) → R o funcţie cu proprietatea P1. Fie de
asemenea k ∈ N ∪ {0}, A,B ⊆ N şi v : A× B → [0,∞) astfel ı̂ncât funcţia
sa sumatorie dublă este echivalentă cu h. Atunci:
(i)pentru orice funcţie integrabilă Riemann f : [0, 1] → R avem următoarea
egalitate

lim
x→∞

1

h(x)

∑

ij≤x, (i,j)∈A×B

f

(
ij

x

)

v(i, j) =

∫ 1

0

f (x) dx.

(ii) Dacă ω : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → [0, 1], ...,
vk : [0, 1] → [0, 1] sunt funcţii continue cu v1 (1)···vk (1) 6= 0 avem următoarea
egalitate

lim
x→∞

1

h(x)

∑

ij≤x, (i,j)∈A×B

ω

(
ij

x
· v1

(
ln1 (ij)

ln1 x

)

· · · vk
(
lnk (ij)

lnk x

))

v(i, j)

=

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx.

(iii) Dacă v0 : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → R, ...,
vk : [0, 1] → R sunt funcţii continue atunci avem următoarea egalitate

lim
x→∞

1

h(x)

∑

ij≤x, (i,j)∈A×B

v0

(
ij

x

)

v1

(
ln1 (ij)

ln1 x

)

· · · vk
(
lnk (ij)

lnk x

)

v(i, j)

= v1 (1) · · · vk (1)
∫ 1

0

v0 (x) dx.

În continuare vom da exemple non-triviale de funcţii pentru care găsim
evaluări asimptotice ale funcţiilor lor sumatorii duble. Pentru aceasta avem
nevoie de următorul rezultat a lui E. Landau din 1900, a se vedea [19, p. 28]
sau [20, paginile 203-205].

Teorema 3.2.6 Fie F : (0,∞) × (0,∞) → R astfel ı̂ncât F (ν, x) ≥ 0

pentru 1 ≤ ν ≤ x; F (ν,x)
ln ν

≥ F (ν′,x)
ln ν′

pentru 2 ≤ ν ≤ ν ′ ≤ x şi F (2, x) =

o
(∫ x

2
F (u,x)
lnu

du
)

.

Atunci
∑

p≤x

F (p, x) v
∫ x

2
F (u,x)
lnu

du.

Propoziţia 3.2.7 Avem următoarele evaluări asimptotice:
(i) card({(i, j) ∈ N× N | ij ≤ x}) v x ln x.
(ii) card{(p, j) ∈ N× N | pj ≤ x, p prim} v x ln (ln x).

(iii) card{(p, q) ∈ N× N | pq ≤ x, p prim, q prim} v

2x ln(lnx)
lnx

.
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Din Corolarul 3.2.5 şi Propoziţia 3.2.7 avem

Corolar 3.2.8 Pentru orice funcţie integrabilă Riemann f : [0, 1] → R avem
următoarele egalităţi

lim
x→∞

1

x ln x

∑

ij≤x, i natural, j natural

f

(
ij

x

)

=

∫ 1

0

f (x) dx;

lim
x→∞

1

x ln (ln x)

∑

pj≤x, p prim, j natural

f

(
pj

x

)

=

∫ 1

0

f (x) dx;

lim
x→∞

ln x

x ln (ln x)

∑

pq≤x, p prim, q prim

f
(pq

x

)

= 2

∫ 1

0

f (x) dx.

Corolar 3.2.9 Fie k ∈ N ∪ {0}.
(i) Dacă ω : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → [0, 1], ...,
vk : [0, 1] → [0, 1] sunt funcţii continue cu v1 (1) · · · vk (1) 6= 0, atunci avem
următoarele egalităţi

lim
x→∞

1

x ln x

∑

ij≤x, i natural, j natural

ω

(
ij

x
· v1

(
ln1 (ij)

ln1 x

)

· · · vk
(
lnk (ij)

lnk x

))

=

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx;

lim
x→∞

1

x ln (ln x)

∑

pj≤x, p prim, j natural

ω

(
pj

x
· v1

(
ln1 (pj)

ln1 x

)

· · · vk
(
lnk (pj)

lnk x

))

=

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx;

lim
x→∞

ln x

x ln (ln x)

∑

pq≤x, p prim, q prim

ω

(
pq

x
· v1

(
ln1 (pq)

ln1 x

)

· · · vk
(
lnk (pq)

lnk x

))

= 2

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx.

(ii) Dacă v0 : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → R, ...,
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vk : [0, 1] → R sunt funcţii continue, atunci avem următoarele egalităţi

lim
x→∞

1

x ln x

∑

ij≤x, i natural, j natural

v0

(
ij

x

)

v1

(
ln1 (ij)

ln1 x

)

· · · vk
(
lnk (ij)

lnk x

)

= v1 (1) · · · vk (1)
∫ 1

0

v0 (x) dx;

lim
x→∞

1

x ln (ln x)

∑

pj≤x, p prim, j natural

v0

(
pj

x

)

v1

(
ln1 (pj)

ln1 x

)

· · · vk
(
lnk (pj)

lnk x

)

= v1 (1) · · · vk (1)
∫ 1

0

v0 (x) dx;

lim
x→∞

ln x

x ln (ln x)

∑

pq≤x, p prim, q prim

v0

(pq

x

)

v1

(
ln1 (pq)

ln1 x

)

· · · vk
(
lnk (pq)

lnk x

)

= 2v1 (1) · · · vk (1)
∫ 1

0

v0 (x) dx.

Rezultatul următor este de alt tip decât cele demonstrate mai sus.

Corolar 3.2.10 Fie k ∈ N ∪ {0}. Atunci:
(i) pentru orice funcţie integrabilă Riemann f : [0, 1] → R avem următoarea
egalitate

lim
x→∞

1

x ln3 x

∑

ij≤x

f

(
ij

x

)

d (i) d (j) =
1

6

∫ 1

0

f (x) dx.

(ii) Dacă ω : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → [0, 1], ...,
vk : [0, 1] → [0, 1] sunt funcţii continue cu v1 (1)···vk (1) 6= 0 avem următoarea
egalitate

lim
x→∞

1

x ln3 x

∑

ij≤x

ω

(
ij

x
· v1

(
ln1 (ij)

ln1 x

)

· · · vk
(
lnk (ij)

lnk x

))

d (i) d (j)

=
1

6

∫ 1

0

ω(x · v1 (1) · · · vk (1))dx.

(iii) Dacă v0 : [0, 1] → R este integrabilă Riemann, v1 : [0, 1] → R, ...,
vk : [0, 1] → R sunt funcţii continue avem următoarea egalitate

lim
x→∞

1

x ln3 x

∑

ij≤x

v0

(
ij

x

)

v1

(
ln1 (ij)

ln1 x

)

· · · vk
(
lnk (ij)

lnk x

)

d (i) d (j)

=
1

6
v1 (1) · · · vk (1)

∫ 1

0

v0 (x) dx.
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3.2.2 Rezultate de tip dublu Riemann-Radoux

În continuare vom demonstra ceea ce noi numim rezultate duble de tip
Riemann-Radoux, a se vedea [4, 27]. De data aceasta, ne concentrăm ı̂n
principal pe unele cazuri particulare. Din Teorema 5 din [4] deducem

Corolar 3.2.11 Fie h : (0,∞) → R o funcţie cu proprietatea Pµ, µ ∈
R−{0}, A,B ⊆ N şi v : A × B → [0,∞) astfel ı̂ncât funcţia sa sumatorie
dublă este echivalentă cu h. Atunci:
(i) pentru orice funcţie integrabilă Riemann f : [0, 1] → R avem următoarea
egalitate

lim
x→∞

∑

ij≤x, (i,j)∈A×B

f
(
ij

x

)
(ij)1−µ

v(i, j)

x1−µh (x)
= µ

∫ 1

0

f (x) dx.

(ii) Dacă µ ∈ (1,∞), pentru orice funcţie f : [0, 1] → R astfel ı̂ncât x →
xµ−1f (x) este integrabilă Riemann avem următoarea egalitate

lim
x→∞

∑

ij≤x, (i,j)∈A×B

f
(
ij

x

)
v(i, j)

h (x)
= µ

∫ 1

0

xµ−1f (x) dx.

În continuare vom demonstra câteva exemple concrete ale Corolarului
3.2.11.

Corolar 3.2.12 Pentru orice funcţie f : [0, 1] → R astfel ı̂ncât x → xf (x)
este integrabilă Riemann, avem următoarea egalitate

lim
x→∞

∑

ij≤x

f
(
ij

x

)
ϕ(i)ϕ(j)

x2 ln x
=

36

π4

∫ 1

0

xf (x) dx.

lim
x→∞

∑

ij≤x

f
(
ij

x

)
d (i)ϕ (j)

x2
=

π2

6

∫ 1

0

xf (x) dx.
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